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csim 分数 case1 speedup case2 speedup case3 speedup weighted speedup

100.00 8.24 9.28 4.85 7.20
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Part A: cache 模拟器

实现简述

缓存的核心数据结构由  class Line  表示，其中包含  valid  位、 tag  和用于实现  LRU  策略的
 last_used 。

对于每一次内存访问，程序会根据地址计算对应的  set index  与  tag ，随后搜索是否命中；若命中，
则更新命中计数并设置行的时间戳。若未命中，则首先尝试填入空行；若没有空行，则依据  LRU  策略
选出最久未使用的行进行替换，同时更新其  tag  与时间戳，并记录一次  eviction 。对  modify(M) 
指令，程序会执行两次访问，每次都更新命中计数与时间戳。

亮点

无

Part B: 矩阵乘法优化

亮点

矩阵分块

用寄存器预存矩阵数据，避免重复读取，从而减少  cache_miss  和  reg_miss 
 case3 矩阵二级分块

我认为的最优秀的实现排序

1. case1
2. case2
3. case3

[!NOTE]
每个  case  上的多次调参以及较小的优化略过不表，只保留几次突破较大的优化。

case1

第一次优化

 naive GEMM  的缺点主要有：跨行访问严重、寄存器重复加载频繁。因此，拿到这个  case  我们首先想
到：要消除不连续的访问、通过分块放大局部性收益。



由于假设的硬件环境为  s = 5，E = 1，b = 4  ，所以一个  block  包含  16 bytes  ，所以一个  line 
恰好能存储  4  个  int  。所以只要让计算过程中每次访问的  A  或  B  的连续  4  个元素对齐到同一
 block  ，就能显著减少  miss  。在  的矩阵中，我们尝试采用  分块，用分块后的小矩
阵作为运算单元，运算后再归位并累加。这样分块使块内数据能正好落入一个  cache line  中，从而较
好地利用空间局部性。

伪代码如下：

for k in 0..15 step 8:

    for j in 0..15 step 8:

        for i in 0..15 step 8:

            for ii in i..i+7:

                Load C[ii][j..j+7] into tempC[8]

                Load A[ii][k..k+7] into tempA[8]

                for kk in k..k+7:

                    Load B[kk][j..j+7] into tempB[8]

                    for t in 0..7:

                        tempC[t] += tempA[kk - k] * tempB[t]

                Write tempC back to C[ii][j..j+7]

这个优化的加速比为  5.63  ，  miss_cache  为  661  ，  miss_reg  为  4352  。

第二次优化

在第一次优化中，我们似乎已经把矩阵分块方面做的很好了。所以我们想到，接下来可以尽可能增加寄

存器的复用。很自然地想到  case0  的最终优化方法:把一个块内的数据全部读到寄存器内，然后暴力计
算。但是如果要把块内数据全部读入寄存器，那么分块的大小就不能太大(因为我们只有 36 个寄存器可

以用)，但如果分块太小，又会增加 cache miss 。但是在第一次优化中我们采用的  分块恰好可以
将块内的数据全部读入寄存器(内层 k 循环外维护 16 个寄存器， k 循环内对 A 和 B 各维护 4 个寄存

器，共 24 个)。

伪代码如下：

16 × 16 4 × 4

4 × 4



for i in 0..15 step 4:

    for j in 0..15 step 4:

        init reg temp[4][4] = 0

        for k in 0..15:

            Read A[i..i+3][k] as a[4]

            Read B[k][j..j+3] as b[4]

            for p in 0..3:

                for q in 0..3:

                    temp[p][q] += a[p] * b[q]

        Write temp[4][4] to C[i..i+3][j..j+3]

这种优化下加速比达到了  8.2438  ，  miss cache  为  496  ，  miss reg  为  2304  。

下面我们分析一下这个结果：

先分析矩阵  。在内层循环结束之后，程序会在每个  block_i  ,  block_j  块的末尾，一次性连续写
入  的结果块。  矩阵总共  个元素。由于 ，每写入  4  个元素填满一个
 cache Line  并触发一次  miss  。故总共有  次  miss  。如下图所示：

C

4 × 4 C 16 × 16 = 256 b = 4
256 ÷ 4 = 64



接下来是矩阵 。在每个  block_i  ,  block_j  的宏块内， k  从  0  循环到  15  ，这意味着我们遍历
了  的全部  16  行。由于  cache  只能容纳  的一半，当读取  的第  8  行时，会驱逐第  0  行的数
据。因此，  矩阵完全没有时间局部性。所以，总共  16  个宏块，每个宏块内需要读取  的全部  16 
行数据。总共发生  次  miss 。如图所示：
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16 × 16 = 256



最后是最难分析的矩阵  。在理想情况下，  在  block_j  循环中是不变的。只有第一列
 （block_j=0） 是冷不命中，后续三列 （block_j=4,8,12） 应该是  hit 。

但实际上，  和  会竞争有限的  cache sets  。由于  的读取方式是按列读取  4  行 ( )，且
 block_i  对齐，故  的数据总是固定落在  cache  的  set 0, 4, 8, 12  与镜像的
 set 16, 20, 24, 28  上。而  的读取随着  k  变化，其  set  映射会扫过  cache  。但是， block_j 

的不同偏移决定了 B 经过的起始  set  。

我们分析  个宏块的分布：

A A

A B A a ​...a ​0 3

A

B

4 × 4



第一列：这是每个  block_i  的第一次读取，没有任何数据在  cache  中。固有  次冷
不命中。

后三列：如果  与  产生了冲突 ，那么  就会被驱逐。在某些块中（例如  block_j=0  及其对
角线衍生位置），  的读取覆盖了  所在的  set 0, 4... ，导致  被踢出。当下一个块需要 
时，必须重新读取，于是产生了  miss  。在余下的  12  个本该复用的块中，有  7  个块被  驱
逐，只有  5  个块实现了复用。固有  个冲突块   次读取 =  次  miss  。A 的总
 cache miss  为：  次  cache miss  。如图所示：

综上，总共有  次  cache miss  ，与测试结果相符合。

4 × 16 = 64

B A A
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7 × 16 112
64 + 112 = 176

64 + 256 + 176 = 496



case2
[!NOTE]
 case2  的思路与  case1  是类似的，这个部分就不过多分析了

由  case1  的分析，  分块有良好的空间局部性，并且在参考附录中几篇文章的策略后，  case2 
中仍然采用  分块。

这个优化的加速比为  9.28  ， miss_cache  为  3200  ， miss_reg  为  17408  。

下面简单分析一下 cache_miss 。

对于矩阵  ，由于  的大小为  ，故  miss  次数为  次。如图所
示：

4 × 4
4 × 4

C C 32 × 32 = 1024 1024 ÷ 4 = 256



对于矩阵  ，在每个 k 循环，由于 4 个 int 刚好装满一个  cache block  ，故除第一次访问  miss  ，
之后  3  次为  hit  。故  k  循环走完会产生  32  次  miss  。而总共有 8 个  block_i  与  8  个
 block_j  ，故一共产生  次  miss  。如图所示：

B

32 × 8 × 8 = 2048



对于矩阵 ，与  case1  中的情况是一样的，因  与  的冲突而产生  miss  。如图，总共有  896  次
 miss  。

A A B



综上，总共与  次  miss  。与测试结果相符合。

case3
在一位师兄的建议与一篇博客的启发下，这个  case  我选择的策略是：对矩阵中可以分块的子矩阵分
块，然后对边界剩余部分分别处理。

我们选择  作为输出矩阵  的主分块大小。矩阵  被划分为四个区域：

主体块区域：  (行 0~27，列 0~24)，使用  分块完全覆盖。

256 + 2048 + 896 = 3200

4 × 5 C C

28 × 25 4 × 5



右侧剩余列区域：  (行 0~27，列 25~28)，使用  分块处理。
底部剩余行区域：  (行 28，列 0~24)，使用  分块处理。
右下角小块区域：  (行 28，列 25~28)。

如图：

这个  case  的伪代码如下：

28 × 4 4 × 4
1 × 25 1 × 5
1 × 4



for block_i in 0..M-3 step 4:      

    for block_j in 0..N-4 step 5: 

        init reg c[4][5] = 0

        for k in 0..K-1:

            Read A[block_i..block_i+3][k] as a[4]

            Read B[k][block_j..block_j+4] as b[5]

            for p in 0..3:

                for q in 0..4:

                    c[p][q] += a[p] * b[q]

        Write c[4][5] to C[block_i..block_i+3][block_j..block_j+4]

for block_i in 0..M-3 step 4:       

    init reg c[4][4] = 0

    for k in 0..K-1:

        Read A[block_i..block_i+3][k] as a[4]

        Read B[k][25..28] as b[4]

        for p in 0..3:

            for q in 0..3:

                c[p][q] += a[p] * b[q]

    Write c[4][4] to C[block_i..block_i+3][25..28]

for block_j in 0..N-4 step 5:      

    init reg c[1][5] = 0

    for k in 0..K-1:

        Read A[28][k] as a[1]

        Read B[k][block_j..block_j+4] as b[5]

        for p in 0..0:

            for q in 0..4:

                c[p][q] += a[p] * b[q]

    Write c[1][5] to C[28][block_j..block_j+4]

init reg c[1][4] = 0

for k in 0..K-1:



    Read A[28][k] as a[1]

    Read B[k][25..28] as b[4]

    for p in 0..0:

        for q in 0..3:

            c[p][q] += a[p] * b[q]

Write c[1][4] to C[28][25..28]

加速比为  4.85  ，  miss_cache  为  5487  ，  miss_reg  为  15051  。

下面我们简单分析一下  cache_miss  。

先分析矩阵  。我们知道一个  cache line  可以存储  4  个  int  ，而矩阵行、列并非  4  的倍数，所
以  的首地址并不是在一个  cache line  的  0  号位。计算后知道  的首地址应该在  line  的  3  号
位。同时，由于 ，每一行的起始地址相对于  cache line  的偏移量都会发生变化。由 

 ，我们知道每一行的起始位置都会比上一行右移一格。主循环中一次写入  5  个元素，占
据  20 bytes 。所以无论起始位置在哪，写入五个元素必然会跨越两个  cache line  。这意味着处理每
一个  block  时，写入  的一行往往需要触发  2  次  miss ，而不是理想情况下的  1  次。如图，  的
 cache_miss  为  341  次。

C

C C

N = 29 29
mod 4 = 1

C C



接下来是矩阵 。外层循环  BI  步长为  4 ，处理矩阵需迭代  7  轮主循环（加上边缘处理共计约  8 
轮扫描）。同时，每一轮扫描都会将前一轮的数据彻底替换。读取分块中的  5  个连续元素时，第一个
元素占据了当前  line  的末尾，导致后续  4  个元素必须从下一个  line  中获取。由于  是按列块扫
描，地址跳跃大， cache  无法同时驻留两个  line ，导致原本  1  次加载能完成的任务变成了  2  次
 miss 。如图，最终的  miss  为  3282  次。

B

B



 的  cache miss  分析难度很大，但可以知道  的绝大部分行块在每一轮循环中都因为  矩阵数据
的涌入而被驱逐。也就是说，每一行每一轮都存在大量的冲突。具体的 miss 如下图所示。

A A B



综上，总共有  次  cache miss  ，与测试结果相符合。

反馈/收获/感悟/总结

这个  lab  是我耗时最久、找资料时间最多、写的最难受的一个  lab 。(也是求助大佬最多的一个lab)
在对网上资料的阅读中，在对大佬与前辈思路的研究中，我也确实学到了很多知识，收获了很多成就

感。

 case3 的优化与分析简直痛苦无比。特别感谢  Gemini  ，她简直是神。我在  case3  上花的时间最多，
但最后也没有取得特别好的效果。最后一个星期本想好好研究一下 case3 ，再尝试一些优化策略，但由

于实在太忙，最后也没有继续优化，这部分的报告也写得比较潦草。有心无力，也是一种遗憾吧。

同时也有一点想吐槽的地方，就是感觉  Part 2  的打榜最后往往变成大家疯狂调超参数，为了  0.01 
的加速比进步而绞尽脑汁。我的感觉是，不如设置一个满分线，达到一定加速比这个 Part 就算满分。

当然这仅仅是我个人的观点。

总之这是一个体验超级棒的  lab  。感谢助教师兄师姐的付出！

341 + 3282 + 1864 = 5487



参考的重要资料

更适合北大宝宝体质的 Cache Lab 踩坑记

北大学长的  cachelab  指南，写的很详细，对一些坑点和难点解析很清楚，对我的  Part A  解决
帮助很大

CSAPP - CacheLab (d-sketon.top)

感谢这篇博客，为我的  Part B case3  提供了很好的思路，“凑分块”的想法由此而来，这篇博客对
我的  Part B  优化帮助很大

通用矩阵乘（GEMM）优化与卷积计算

很棒的解析，让我对各种优化策略有了更深的理解。我最开始做  Part B  就是从这里入门的

https://arthals.ink/blog/cache-lab
https://d-sketon.top/20211015/csapp-cachelab/
https://zhuanlan.zhihu.com/p/66958390

