
CacheLab 报告
作者：Maliketh

csim 分数 case1 speedup case2 speedup case3 speedup weighted speedup

100.00 8.24 9.28 4.85 7.20

Autograder 截图：

Part A: cache 模拟器

实现简述

缓存的核心数据结构由 class Line 表示，其中包含 valid 位、 tag 和用于实现 LRU 策略的
 last_used 。

对于每一次内存访问，程序会根据地址计算对应的 set index 与 tag ，随后搜索是否命中；若命中，
则更新命中计数并设置行的时间戳。若未命中，则首先尝试填入空行；若没有空行，则依据 LRU 策略
选出最久未使用的行进行替换，同时更新其 tag 与时间戳，并记录一次 eviction 。对 modify(M)
指令，程序会执行两次访问，每次都更新命中计数与时间戳。

亮点

无

Part B: 矩阵乘法优化

亮点

矩阵分块

用寄存器预存矩阵数据，避免重复读取，从而减少 cache_miss 和 reg_miss
 case3 矩阵二级分块

我认为的最优秀的实现排序

1. case1
2. case2
3. case3

[!NOTE]
每个 case 上的多次调参以及较小的优化略过不表，只保留几次突破较大的优化。

case1

第一次优化

 naive GEMM 的缺点主要有：跨行访问严重、寄存器重复加载频繁。因此，拿到这个 case 我们首先想
到：要消除不连续的访问、通过分块放大局部性收益。

由于假设的硬件环境为 s = 5，E = 1，b = 4 ，所以一个 block 包含 16 bytes ，所以一个 line
恰好能存储 4 个 int 。所以只要让计算过程中每次访问的 A 或 B 的连续 4 个元素对齐到同一
 block ，就能显著减少 miss 。在 的矩阵中，我们尝试采用 分块，用分块后的小矩
阵作为运算单元，运算后再归位并累加。这样分块使块内数据能正好落入一个 cache line 中，从而较
好地利用空间局部性。

伪代码如下：

for k in 0..15 step 8:

 for j in 0..15 step 8:

 for i in 0..15 step 8:

 for ii in i..i+7:

 Load C[ii][j..j+7] into tempC[8]

 Load A[ii][k..k+7] into tempA[8]

 for kk in k..k+7:

 Load B[kk][j..j+7] into tempB[8]

 for t in 0..7:

 tempC[t] += tempA[kk - k] * tempB[t]

 Write tempC back to C[ii][j..j+7]

这个优化的加速比为 5.63 ， miss_cache 为 661 ， miss_reg 为 4352 。

第二次优化

在第一次优化中，我们似乎已经把矩阵分块方面做的很好了。所以我们想到，接下来可以尽可能增加寄

存器的复用。很自然地想到 case0 的最终优化方法:把一个块内的数据全部读到寄存器内，然后暴力计
算。但是如果要把块内数据全部读入寄存器，那么分块的大小就不能太大(因为我们只有 36 个寄存器可

以用)，但如果分块太小，又会增加 cache miss 。但是在第一次优化中我们采用的 分块恰好可以
将块内的数据全部读入寄存器(内层 k 循环外维护 16 个寄存器， k 循环内对 A 和 B 各维护 4 个寄存

器，共 24 个)。

伪代码如下：

16 × 16 4 × 4

4 × 4

for i in 0..15 step 4:

 for j in 0..15 step 4:

 init reg temp[4][4] = 0

 for k in 0..15:

 Read A[i..i+3][k] as a[4]

 Read B[k][j..j+3] as b[4]

 for p in 0..3:

 for q in 0..3:

 temp[p][q] += a[p] * b[q]

 Write temp[4][4] to C[i..i+3][j..j+3]

这种优化下加速比达到了 8.2438 ， miss cache 为 496 ， miss reg 为 2304 。

下面我们分析一下这个结果：

先分析矩阵 。在内层循环结束之后，程序会在每个 block_i , block_j 块的末尾，一次性连续写
入 的结果块。 矩阵总共 个元素。由于 ，每写入 4 个元素填满一个
 cache Line 并触发一次 miss 。故总共有 次 miss 。如下图所示：

C

4 × 4 C 16 × 16 = 256 b = 4
256 ÷ 4 = 64

接下来是矩阵 。在每个 block_i , block_j 的宏块内， k 从 0 循环到 15 ，这意味着我们遍历
了 的全部 16 行。由于 cache 只能容纳 的一半，当读取 的第 8 行时，会驱逐第 0 行的数
据。因此， 矩阵完全没有时间局部性。所以，总共 16 个宏块，每个宏块内需要读取 的全部 16
行数据。总共发生 次 miss 。如图所示：

B

B B B

B B

16 × 16 = 256

最后是最难分析的矩阵 。在理想情况下， 在 block_j 循环中是不变的。只有第一列
 （block_j=0） 是冷不命中，后续三列 （block_j=4,8,12） 应该是 hit 。

但实际上， 和 会竞争有限的 cache sets 。由于 的读取方式是按列读取 4 行 ()，且
 block_i 对齐，故 的数据总是固定落在 cache 的 set 0, 4, 8, 12 与镜像的
 set 16, 20, 24, 28 上。而 的读取随着 k 变化，其 set 映射会扫过 cache 。但是， block_j

的不同偏移决定了 B 经过的起始 set 。

我们分析 个宏块的分布：

A A

A B A a ​...a ​0 3

A

B

4 × 4

第一列：这是每个 block_i 的第一次读取，没有任何数据在 cache 中。固有 次冷
不命中。

后三列：如果 与 产生了冲突 ，那么 就会被驱逐。在某些块中（例如 block_j=0 及其对
角线衍生位置）， 的读取覆盖了 所在的 set 0, 4... ，导致 被踢出。当下一个块需要
时，必须重新读取，于是产生了 miss 。在余下的 12 个本该复用的块中，有 7 个块被 驱
逐，只有 5 个块实现了复用。固有 个冲突块 次读取 = 次 miss 。A 的总
 cache miss 为： 次 cache miss 。如图所示：

综上，总共有 次 cache miss ，与测试结果相符合。

4 × 16 = 64

B A A

B A A A

B

7 × 16 112
64 + 112 = 176

64 + 256 + 176 = 496

case2
[!NOTE]
 case2 的思路与 case1 是类似的，这个部分就不过多分析了

由 case1 的分析， 分块有良好的空间局部性，并且在参考附录中几篇文章的策略后， case2
中仍然采用 分块。

这个优化的加速比为 9.28 ， miss_cache 为 3200 ， miss_reg 为 17408 。

下面简单分析一下 cache_miss 。

对于矩阵 ，由于 的大小为 ，故 miss 次数为 次。如图所
示：

4 × 4
4 × 4

C C 32 × 32 = 1024 1024 ÷ 4 = 256

对于矩阵 ，在每个 k 循环，由于 4 个 int 刚好装满一个 cache block ，故除第一次访问 miss ，
之后 3 次为 hit 。故 k 循环走完会产生 32 次 miss 。而总共有 8 个 block_i 与 8 个
 block_j ，故一共产生 次 miss 。如图所示：

B

32 × 8 × 8 = 2048

对于矩阵 ，与 case1 中的情况是一样的，因 与 的冲突而产生 miss 。如图，总共有 896 次
 miss 。

A A B

综上，总共与 次 miss 。与测试结果相符合。

case3
在一位师兄的建议与一篇博客的启发下，这个 case 我选择的策略是：对矩阵中可以分块的子矩阵分
块，然后对边界剩余部分分别处理。

我们选择 作为输出矩阵 的主分块大小。矩阵 被划分为四个区域：

主体块区域： (行 0~27，列 0~24)，使用 分块完全覆盖。

256 + 2048 + 896 = 3200

4 × 5 C C

28 × 25 4 × 5

右侧剩余列区域： (行 0~27，列 25~28)，使用 分块处理。
底部剩余行区域： (行 28，列 0~24)，使用 分块处理。
右下角小块区域： (行 28，列 25~28)。

如图：

这个 case 的伪代码如下：

28 × 4 4 × 4
1 × 25 1 × 5
1 × 4

for block_i in 0..M-3 step 4:

 for block_j in 0..N-4 step 5:

 init reg c[4][5] = 0

 for k in 0..K-1:

 Read A[block_i..block_i+3][k] as a[4]

 Read B[k][block_j..block_j+4] as b[5]

 for p in 0..3:

 for q in 0..4:

 c[p][q] += a[p] * b[q]

 Write c[4][5] to C[block_i..block_i+3][block_j..block_j+4]

for block_i in 0..M-3 step 4:

 init reg c[4][4] = 0

 for k in 0..K-1:

 Read A[block_i..block_i+3][k] as a[4]

 Read B[k][25..28] as b[4]

 for p in 0..3:

 for q in 0..3:

 c[p][q] += a[p] * b[q]

 Write c[4][4] to C[block_i..block_i+3][25..28]

for block_j in 0..N-4 step 5:

 init reg c[1][5] = 0

 for k in 0..K-1:

 Read A[28][k] as a[1]

 Read B[k][block_j..block_j+4] as b[5]

 for p in 0..0:

 for q in 0..4:

 c[p][q] += a[p] * b[q]

 Write c[1][5] to C[28][block_j..block_j+4]

init reg c[1][4] = 0

for k in 0..K-1:

 Read A[28][k] as a[1]

 Read B[k][25..28] as b[4]

 for p in 0..0:

 for q in 0..3:

 c[p][q] += a[p] * b[q]

Write c[1][4] to C[28][25..28]

加速比为 4.85 ， miss_cache 为 5487 ， miss_reg 为 15051 。

下面我们简单分析一下 cache_miss 。

先分析矩阵 。我们知道一个 cache line 可以存储 4 个 int ，而矩阵行、列并非 4 的倍数，所
以 的首地址并不是在一个 cache line 的 0 号位。计算后知道 的首地址应该在 line 的 3 号
位。同时，由于 ，每一行的起始地址相对于 cache line 的偏移量都会发生变化。由

 ，我们知道每一行的起始位置都会比上一行右移一格。主循环中一次写入 5 个元素，占
据 20 bytes 。所以无论起始位置在哪，写入五个元素必然会跨越两个 cache line 。这意味着处理每
一个 block 时，写入 的一行往往需要触发 2 次 miss ，而不是理想情况下的 1 次。如图， 的
 cache_miss 为 341 次。

C

C C

N = 29 29
mod 4 = 1

C C

接下来是矩阵 。外层循环 BI 步长为 4 ，处理矩阵需迭代 7 轮主循环（加上边缘处理共计约 8
轮扫描）。同时，每一轮扫描都会将前一轮的数据彻底替换。读取分块中的 5 个连续元素时，第一个
元素占据了当前 line 的末尾，导致后续 4 个元素必须从下一个 line 中获取。由于 是按列块扫
描，地址跳跃大， cache 无法同时驻留两个 line ，导致原本 1 次加载能完成的任务变成了 2 次
 miss 。如图，最终的 miss 为 3282 次。

B

B

 的 cache miss 分析难度很大，但可以知道 的绝大部分行块在每一轮循环中都因为 矩阵数据
的涌入而被驱逐。也就是说，每一行每一轮都存在大量的冲突。具体的 miss 如下图所示。

A A B

综上，总共有 次 cache miss ，与测试结果相符合。

反馈/收获/感悟/总结

这个 lab 是我耗时最久、找资料时间最多、写的最难受的一个 lab 。(也是求助大佬最多的一个lab)
在对网上资料的阅读中，在对大佬与前辈思路的研究中，我也确实学到了很多知识，收获了很多成就

感。

 case3 的优化与分析简直痛苦无比。特别感谢 Gemini ，她简直是神。我在 case3 上花的时间最多，
但最后也没有取得特别好的效果。最后一个星期本想好好研究一下 case3 ，再尝试一些优化策略，但由

于实在太忙，最后也没有继续优化，这部分的报告也写得比较潦草。有心无力，也是一种遗憾吧。

同时也有一点想吐槽的地方，就是感觉 Part 2 的打榜最后往往变成大家疯狂调超参数，为了 0.01
的加速比进步而绞尽脑汁。我的感觉是，不如设置一个满分线，达到一定加速比这个 Part 就算满分。

当然这仅仅是我个人的观点。

总之这是一个体验超级棒的 lab 。感谢助教师兄师姐的付出！

341 + 3282 + 1864 = 5487

参考的重要资料

更适合北大宝宝体质的 Cache Lab 踩坑记

北大学长的 cachelab 指南，写的很详细，对一些坑点和难点解析很清楚，对我的 Part A 解决
帮助很大

CSAPP - CacheLab (d-sketon.top)

感谢这篇博客，为我的 Part B case3 提供了很好的思路，“凑分块”的想法由此而来，这篇博客对
我的 Part B 优化帮助很大

通用矩阵乘（GEMM）优化与卷积计算

很棒的解析，让我对各种优化策略有了更深的理解。我最开始做 Part B 就是从这里入门的

https://arthals.ink/blog/cache-lab
https://d-sketon.top/20211015/csapp-cachelab/
https://zhuanlan.zhihu.com/p/66958390

